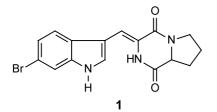


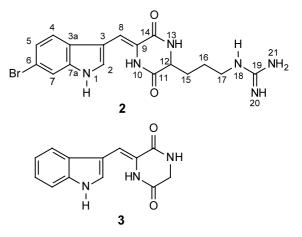
Tetrahedron Letters 43 (2002) 3385-3386

Barettin, revisited?

Susanne Sölter,^a Ralf Dieckmann,^b Martin Blumenberg^c and Wittko Francke^{a,*}


^aInstitut für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany ^bMax-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Franklinstr. 29, D-10587 Berlin, Germany

^cInstitut für Biogeochemie und Meereschemie, Universität Hamburg, Bundesstr. 55, D-20146 Hamburg, Germany


Received 2 March 2002; accepted 8 March 2002

Abstract—A new indole derivative representing a condensation product of 6-bromotryptophan and arginine is the major diketopiperazine produced by the sponge *Geodia baretti*. Strong evidence is provided that this compound represents the correct structure of barettin, which had been described earlier. © 2002 Elsevier Science Ltd. All rights reserved.

Sponges of the family Geodiidae are sources of interesting natural products.^{1,2} Lidgren et al. have described the isolation of a pharmacologically active indole alkaloid from the cold water sponge *Geodia baretti*.^{3,4} On the basis of spectral data they proposed the compound to be the diketopiperazine **1** which they called barettin. An independent synthesis of **1**, however, disproved this structure.⁵ Here we describe the isolation and structure elucidation of the novel diketopiperazine **2** from *G*. *baretti*, showing spectral data similar to those reported for barettin. We do not suggest a trivial name for **2**, but we believe it to represent the compound that has been originally termed barettin.

The material was collected by submersible at the sularidge (Norway) at 300 m depth. The sponge (200 g wet weight) was immediately frozen and kept at -18° C until extraction with acetone. Under reduced pressure, the organic solvent was removed from the aqueous acetone extract. The remaining aqueous solution was extracted with 1-butanol, and the organic layer was concentrated to dryness. The residue was subjected to column chromatography (Merck silica 60, 230–400 mesh, 15% CH_2Cl_2 in MeOH, 0.5 bar overpressure) to yield 2 (0.02% wet weight).

Investigations of **2** by HR-ESI-MS gave $[M+H]^+$ at m/z 419.0833 corresponding to the molecular formula of $C_{17}H_{20}BrN_6O_2$ (calcd 419.0831). This shows the molecular weight of **2** to be 59 g/mol (CH₅N₃) higher than that of **1**. Screening for the presence of **1** in the crude extract of *G. baretti* proved to be negative. Investigations by MALDI-TOF did not show any mass signal at m/z 360 ([M+H]⁺ of **1**); however, a molecular ion cluster at m/z 419, 421 [M+H]⁺ (ratio 1:1), characteristic of a monobrominated compound (like **2**) could be detected.

The ¹H NMR of the new compound showed characteristic signals in the lowfield region indicating a disubstituted indole system.⁶ ¹H–¹H coupling as well as NOE

Keywords: diketopiperazine; barettin; sponge; Geodia.

^{*} Corresponding author. Tel.: +49 (40) 42838-2874; fax: +49 (40) 42838-3834; e-mail: francke@chemie.uni-hamburg.de

^{0040-4039/02/}\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00470-7

Table 1. ¹H NMR (Bruker DRX 500, 500 MHz, DMSO- d_6) and ¹³C NMR (Bruker AMX 400, 101 MHz, D₃COD) data of barettin

Carbon	δ (ppm)	Proton	δ (ppm)	J (Hz)	COSY ^a	HMBC ^b	NOE ^c
		1-H	12.12	d, $J_{1,2} = 2.5$	2-H	C-2, C-3, C-3a	2-H, 7-H, 10-H
C-2	127.45	2-H	7.99	d, $J_{1,2} = 2.5$	1-H, 8-H	C-3, C-3a, C-7a, C-8	1-H, 10-H
C-3	109.87						
C-3a	127.55						
C-4	120.87	4-H	7.62	d, $J_{4.5} = 8.5$	5-H, 7-H	C-3, C-6, C-7a	5-H, 8-H
C-5	224.52	5-H	7.24	dd, $J_{4,5} = 8.5;$	4-H, 7-H	C-3a, C-7	4-H
				$J_{5,7} = 1.6$			
C-6	117.03						
C-7	115.69	7-H	7.67	d, $J_{5,7} = 1.6$	4-H, 5-H	C-3a, C-5	1-H
C-7a	138.42						
C-8	110.95	8-H	6.99	S	2-H, 10-H	C-2, C-3a, C-11, C-14	2-H, 4-H
C-9	123.35						
		10-H	9.63	S	8-H	C-8, C-9, C-11, C-12, C-14	1-H,2-H
C-11	168.61						
C-12	56.48	12-H	4.07	m	13-H, 15-H	C-11, C-14, C-15, C-16	13-H
		13-H	8.45	d, $J_{12,13} = 2.5$	12-H	C-9, C-11, C-12	12-H
C-14	163.36						
C-15	32.62	15-H ₂	1.76 - 1.84	m	12-H, 16-H	C-11, C-12, C-16	-
C-16	25.11	16-H ₂	1.50-1.63	m	15-Н, 17-Н	C-12, C-17	17 - H
C-17	41.98	17-H ₂	3.16-3.20	m	16-H, 18-H	C-15, C-16, C-19	16-H
		18-H	8.01	t, $J_{17,18} = 6.0$	17 - H	C-17, C-19	-
C-19	158.61						
		$20-/21-H_3$	7.00 - 7.78	br	-	_	_

^a Correlations of protons in COSY spectra (500 MHz, DMSO-d₆).

^b Correlations of protons in HMBC spectra (500 MHz, DMSO-*d*₆).

^c Correlations of protons in NOESY spectra (500 MHz, DMSO-*d*₆).

data suggested 3,6-substitution of the indole nucleus, positioning a bromo substituent at C-6 (similar to many other indole derivatives identified in marine organisms).7 An additional signal at 6.99 ppm indicated a methine group in the 3-position of the indole system (consequently conjugated with another double bond). HMBC spectra showed the presence of a diketopiperazine system attached to the bromoindole via this methine group. NOE data proved the corresponding double bond to be cis-configurated. All data fitted perfectly those reported for barettin and those of dipodazine 3, a secondary metabolite isolated from *Penicillium dipodomvis*.^{2,8} In the upfield region, signals caused by protons of a continuous spinsystem (12-H, 13-H, 15-H to 18-H) were found. Chemical shifts of carbon atoms belonging to an aliphatic side chain linked to the diketopiperazine strongly pointed to an arginine substructure.⁹ This assignment was further supported by a broad signal between 7.00 and 7.78 ppm (¹H NMR) representing the terminal amino groups of the guanidino moiety which typically exchange protons. ¹H and ¹³C NMR data as well as couplings resulting from ¹H-¹H-COSY, HMBC and NOESY experiments are listed in Table 1.

Acknowledgements

Friederike Hoffmann has kindly determined the species,

Dr. Stephan Franke furnished the HR-ESI-MS. This paper represents publication no. 13 of the research program BOSMAN (03F0256 A-D). Financial support was provided by the Bundesministerium für Bildung und Forschung (BMBF).

References

- 1. Raverty, W. D.; Thomson, R. H.; King, T. J. J. Chem. Soc., Perkin Trans. 1 1977, 1204–1211.
- Chan, W. R; Tinto, W. F.; Manchand, P. S.; Todaro, L. J. J. Org. Chem. 1987, 52, 3091–3093.
- Lidgren, G.; Bohlin, L.; Bergmann, J. Tetrahedron Lett. 1986, 27, 3283–3284.
- 4. In the chemical literature the sponge is called *Geodia* baretti, while biologists call the species *Geodia* barretti after Lucas Barrett.
- 5. Lieberknecht, A.; Griesser, H. *Tetrahedron Lett.* **1987**, *28*, 4275–4278.
- 6. Dinsmore, C. J.; Zartman, C. B. *Tetrahedron Lett.* 2000, 41, 6309–6312.
- 7. Gribble, G. W. J. Nat. Prod. 1992, 47, 1353-1395.
- Soerensen, D.; Larsen, T. O.; Christophersen, C.; Nielsen, P. H.; Anthoni, U. *Phytochemistry* 1999, 51, 1181–1183.
- Kalinowski, H.-O.; Berger, S.; Braun, S. ¹³C NMR-Spektroskopie; Georg Thieme: Stuttgart, 1984; p. 208.